Nonnegativity Preserving Interpolation byC1Bivariate Rational Spline Surface
نویسندگان
چکیده
منابع مشابه
Shape Preserving Interpolation Using C2 Rational Cubic Spline
Abstract: This study proposes new C rational cubic spline interpolant of the form cubic/quadratic with three shape parameters to preserves the geometric properties of the given data sets. Sufficient conditions for the positivity and data constrained modeling of the rational interpolant are derived on one parameter while the remaining two parameters can further be utilized to change and modify t...
متن کاملShape Preserving C Spline Interpolation
In this paper we summarize the main results of where an algo rithm of shape preserving C spline interpolation for arbitrary D discrete data is developed We consider a classi cation of such data to separate the sec tions of linearity the angles and the breaks For remaining data we give a local algorithm of C interpolation by generalized splines with automatic choice of the parameters to retain t...
متن کاملNonnegativity-, Monotonicity-, or Convexity-Preserving Cubic and Quintic Hermite Interpolation*
The Hermite polynomials are simple, effective interpolants of discrete data. These interpolants can preserve local positivity, monotonicity, and convexity of the data if we restrict their derivatives to satisfy constraints at the data points. This paper describes the conditions that must be satisfied for cubic and quintic Hermite interpolants to preserve these properties when they exist in the ...
متن کاملBivariate Rational Spline Surface
This paper is concerned with the nonnegativity preserving interpolation of data on rectangular grids. The function is a kind of bivariate rational interpolation spline with parameters, which is C1 in the whole interpolation region. Sufficient conditions are derived on coefficients in the rational spline to ensure that the surfaces are always nonnegative if the original data are nonnegative. The...
متن کاملNonnegativity preserving macro-element interpolation of scattered data
Nonnegative bivariate interpolants to scattered data are constructed using some C macro-element spline spaces. The methods are local, and rely on adjusting gradients at the data points to insure nonnegativity of the spline when the original data is nonnegative. More general range-restricted interpolation is also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2012
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2012/624978